Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Blog

  • Et si le corps "écoutait "?

    Le son peut moduler l’activité des gènes, selon une étude japonaise

    Exposées à des ondes sonores, certaines cellules modifient l’activité de leurs gènes.

    Une étude révèle la sensibilité des cellules aux stimuli sonores

    Et si notre perception du son ne se limitait pas à l’ouïe? Des chercheurs japonais dévoilent une étonnante sensibilité cellulaire aux vibrations acoustiques. Leur étude montre que certaines ondes sonores peuvent aller jusqu’à modifier l’activité de cellules, ouvrant un nouveau champ d’exploration en mécanobiologie et en biologie acoustique. En d’autres termes, le corps, bien au-delà de l’oreille, pourrait lui aussi " écouter ".

    Le son, rappelons-le, se manifeste sous forme d’ondes mécaniques de compression se propageant à travers divers milieux – l’air, l’eau ou encore les tissus organiques. Ces ondes induisent des variations de pression que l’appareil auditif humain, hautement spécialisé, est capable d’interpréter avec une précision remarquable.

    Partant de cette réalité physique, des chercheurs de l’Université de Kyoto, dirigés par le Dr Masahiro Kumeta, ont exploré la possibilité que les ondes de pression acoustique, même à des niveaux sonores considérés comme physiologiques, puissent interagir directement avec des cellules vivantes et y déclencher des réponses biologiques mesurables.

    L’équipe s’est donc attachée à comprendre comment les cellules pouvaient potentiellement décrypter les signaux véhiculés par le son". Le son est l’une des forces physiques les plus omniprésentes dans la nature ", observent les auteurs de l’étude parue dans la revue Communications Biology.

    Pour évaluer les effets du son sur l’activité cellulaire, le Dr Kumeta a détaillé dans un communiqué le dispositif expérimental mis au point: " Nous avons conçu un système qui permet d’immerger des cellules cultivées dans un environnement d’ondes acoustiques contrôlées".

    Un dispositif spécifiquement adapté pour une immersion sonore contrôlée

    Dans le cadre de leur étude, les chercheurs de Kyoto ont élaboré un montage expérimental sur mesure, destiné à exposer des cultures cellulaires à des ondes acoustiques précisément réglées. Ce dispositif a permis de documenter rigoureusement les réactions biologiques induites.

    Le cœur du système est un transducteur de vibrations, installé à l’envers sous une étagère de laboratoire. Habituellement utilisé pour convertir des signaux électriques en vibrations mécaniques, ce transducteur a été relié à un lecteur audio numérique, lui-même connecté à un amplificateur. Cette configuration autorise une génération sonore d’une grande précision, tant en fréquence qu’en intensité.

     

    L’onde acoustique ainsi produite est transmise directement dans l’environnement des cellules en culture via un diaphragme conçu spécialement à cet effet. Ce dernier est mécaniquement relié à la boîte de culture contenant des cellules issues de modèles murins. Cette interface physique garantit une diffusion uniforme et précisément contrôlée de la pression acoustique, tout en minimisant les interférences extérieures. Les cellules baignent ainsi dans un bain sonore maîtrisé, offrant aux chercheurs un contrôle expérimental optimal.

    Les cultures cellulaires ont été soumises à deux fréquences spécifiques: 440 Hz, qui correspond au "la" musical, et 14 kHz, soit un seuil proche des limites supérieures de l’audition humaine. En parallèle, un groupe témoin a été exposé à du bruit blanc. L’analyse par séquençage ARN, couplée à des techniques de microscopie avancée, a révélé une réactivité acoustique chez près de 190 gènes.

    Une suppression de la différenciation des adipocytes

    Les réactions observées différaient selon les types cellulaires. Toutefois, un fait marquant est apparu: l’exposition aux ondes sonores a démontré une capacité à supprimer la différenciation des adipocytes. Au cours de ce processus, les préadipocytes, cellules indifférenciées, en viennent à se différencier en cellules adipeuses matures, spécialisées dans le stockage des graisses. Une inhibition qui ouvre des perspectives thérapeutiques prometteuses dans la lutte contre l’obésité.

    "Le son étant immatériel, la stimulation acoustique représente un outil non invasif, sécuritaire et immédiat, qui pourrait représenter un outil complémentaire prometteur en médecine", estime le Dr Kumeta.

    L’étude met en lumière des réponses cellulaires distinctes selon les caractéristiques acoustiques. Certains gènes réagissent uniquement à une fréquence spécifique, tandis que sept d’entre eux présentent une activation à une fréquence et une inhibition à une autre. Il convient cependant de souligner que la significativité statistique de ces résultats devrait être confirmée par des analyses supplémentaires.

    Les chercheurs ont également étudié la forme de l’onde sonore. Des signaux sinusoïdaux, carrés et triangulaires ont été appliqués aux mêmes fréquences. La réponse cellulaire s’est révélée globalement similaire, bien que les ondes sinusoïdales aient produit les effets les plus marqués.

    La densité cellulaire s’est également avérée déterminante. Certains gènes réagissaient de manière opposée selon la concentration des cellules exposées. Une exposition prolongée de 24 heures était nécessaire pour constater l’ensemble des effets sur l’expression génique, bien qu’un tiers des changements soit apparu dès les deux premières heures.

    Des travaux antérieurs ont déjà suggéré que le bruit blanc pouvait traverser les tissus jusqu’au fœtus chez les mammifères, ce qui laisse envisager une transmission similaire chez l’humain. Cela dit, la signification évolutive des réponses cellulaires observées dans cette étude reste difficile à cerner: une exposition prolongée à une fréquence sonore stable est rare dans les environnements naturels. Reste que plusieurs gènes sensibles aux hautes fréquences (14 kHz) sont associés à des mécanismes de réponse à l’hypoxie.

    Cette étude contribue au développement d’un champ de recherche encore émergent: la mécanobiologie, qui explore l’influence des forces physiques sur le comportement cellulaire. En mettant en évidence un lien tangible entre ondes sonores et modulation génétique, elle ouvre de nouvelles perspectives à l’intersection de la physique, de la biologie et de la médecine.

    Source: Communications Biology

     

  • Notre tête émet de la lumière

    image générée par moi par I.A.

    La lumière émise par le cerveau mesurée pour la première fois

    Tous les tissus vivants émettent un faible flux de lumière. Des chercheurs ont mesuré pour la première fois ces "bio-photons" produits par le cerveau humain. Jouent-ils un rôle dans la cognition?

    La vie, pour l’essentiel, est baignée de lumière: le Soleil procure à la planète l’énergie indispensable à la grande majorité des écosystèmes qu’elle abrite. Mais la vie crée également sa propre lumière, et pas seulement la bioluminescence des vers luisants et des poissons lanternes, ou les rayonnements infra-rouges engendrés par la chaleur. Les tissus vivants émettent un flux continu de lumière de faible intensité, ou bio-photons. Les scientifiques dénomment ce phénomène" émissions de photons ultra-faibles" (UPE, pour ultra-weak photon emissions, en anglais).

    Ils supposent qu’elles ont pour origine des réactions biomoléculaires produisant de l’énergie, dont les photons sont des sous-produits. Dès lors, plus un tissu utilise d’énergie, plus il devrait diffuser de la lumière; ce qui signifie que, dans notre corps, le cerveau devrait être particulièrement émetteur.

    Dans une nouvelle étude publiée dans la revue iScience, des chercheurs ont détecté pour la première fois, depuis l’extérieur du crâne, des émissions par le cerveau humain de bio-photons et observé que celles-ci changeaient lorsque les participants (sans pouvoir établir de relation claire entre émissions et nature des tâches cognitives). Quel rôle ces photons sont-ils susceptibles de jouer dans l’activité cérébrale?

    DE TRES FAIBLES RAYONNEMENTS

    Fondamentalement, toute matière émet des photons. En effet, tout corps dont la température est supérieure au zéro absolu produit un rayonnement, dans les longueurs d’onde infra-rouges. Les UPE sont cependant plusieurs ordres de grandeur moins intenses que ce rayonnement thermique, et leurs longueurs d’onde se situent dans la gamme de la lumière visible ou quasi visible du spectre électromagnétique.

    Certaines molécules biologiques, lors de processus métaboliques, sont susceptibles de se trouver dans un état excité; elles libèrent alors des photons lorsqu’elles retrouvent leur état fondamental.

    Les chercheurs qui étudient les tissus biologiques, y compris les neurones, parviennent à détecter ce très faible flux de lumière continu, allant de quelques photons à plusieurs centaines par centimètre carré chaque seconde, à l’échelle de cultures de cellules, dans des boîtes de Pétri. "La question était de savoir si ces photons, à l’échelle d’un organe qu’est le cerveau humain, pouvaient être impliqués dans le traitement ou la propagation de l’information", explique l’autrice principale de l’étude, Nirosha Murugan, biophysicienne à l’université Wilfrid-Laurier, au Canada.

    Cela fait au moins un siècle que les scientifiques font l’hypothèse que les bio-photons jouent un rôle dans la communication cellulaire. En 1923, le biologiste russe Alexander Gurwitsch a mené des expériences dont le principe consistait à empêcher les photons émis par des racines d’oignons d’atteindre d’autres racines adjacentes, et conclu que ces "barrières" empêchaient la plante de pousser. Au cours des dernières décennies, une poignée d’études ont contribué à suggérer que les bio-photons jouent un rôle dans la communication cellulaire, et influencent la croissance et le développement d’un organisme.

    DES PHOTONS CAPTES SUR LE CRANE

    Se fondant sur ces travaux, Nirosha Murugan et son équipe ont cherché à mettre en évidence un phénomène comparable dans le cerveau humain. Il fallait d’abord, pour cela, vérifier qu’il était possible de mesurer les UPE à la surface du crâne.

    À cette fin, ils ont muni vingt participants, dans une salle plongée dans le noir, de casques d’électro-encéphalographie (EEG). Des tubes amplificateurs de photons destinés à détecter les UPE étaient également placés autour de leur tête.

    Ces détecteurs étaient regroupés à l’aplomb de deux régions cérébrales: les lobes occipitaux, situés en arrière du cerveau, responsables du traitement visuel, et les lobes temporaux, de chaque côté du cerveau, responsables du traitement auditif. Pour distinguer les UPE du bruit de fond, l’équipe a également installé des détecteurs d’UPE distincts, orientés à l’opposé des participants.

    "Notre premier constat, c’est que les photons sortent de la tête, ça ne fait pas de doute", affirme Nirosha Murugan. La chercheuse a ensuite voulu vérifier si l’intensité de ces émissions changeait en fonction du type de tâche cognitive effectuée par les participants.

    Le cerveau étant un organe très coûteux sur le plan métabolique, son hypothèse était que l’intensité des UPE devait augmenter lorsque les personnes exécutaient des tâches nécessitant plus d’énergie, comme le traitement visuel. C’est ce qui est en général observé dans les cultures cellulaires: un surcroît d’activité des neurones se traduit en émissions plus intenses.

    UN ROLE DANS LES PROCESSUS COGNITIFS?

    Si les dispositifs de mesure parvenaient à distinguer les photons provenant de la tête des participants du bruit de fond de ceux de la pièce, ils ont cependant échoué à établir une différence entre différentes régions cérébrales". Peut-être est-ce parce que les biophotons se diffusent dans le cerveau ", estime la chercheuse. Son équipe a toutefois mesuré des variations, pour une région donnée, au moment où les sujets changeaient de tâche, suggérant un lien entre les processus cognitifs et les émissions.

    Les chercheurs ont donc plus de questions que de réponses quant au rôle des UPE dans le cerveau.

    "C’est une approche très étonnante, recelant un potentiel intéressant pour la mesure de l’activité cérébrale, même si de nombreuses incertitudes subsistent", juge Michael Gramlich, biophysicien à l’université d’Auburn, en Alabama, aux États-Unis, qui n’a pas participé à l’étude". La question essentielle est de savoir si les UPE constituent un mécanisme actif de modification des processus cognitifs ou s’ils ne font que renforcer des mécanismes cognitifs connus".

    Daniel Remondini, biophysicien à l’université de Bologne, en Italie, soulève une autre question: "Quelle distance ces photons peuvent-ils parcourir à l’intérieur des tissus biologiques?".

    La réponse pourrait aider à éclaircir la relation entre activité cérébrale et émissions de photons issues de différentes régions du cerveau.

    Pour répondre à ces nouvelles interrogations, l’équipe de Nirosha Murugan envisage d’utiliser des réseaux de capteurs plus précis afin de déterminer l’origine des photons dans le cerveau. Des scientifiques de l’université de Rochester développent également des sondes nanométriques pour évaluer la capacité des fibres nerveuses à transmettre des bio-photons.

    Même si la lueur émise par notre cerveau ne joue aucun rôle dans son fonctionnement, la technique consistant à mesurer les biophotons en même temps que les signaux électriques – ce que Nirosha Murugan et ses collègues appellent la " photoencéphalographie " – pourrait un jour constituer un moyen utile de recueillir de manière non invasive des informations sur son état". Il est possible que cette technique soit largement adoptée dans les décennies à venir, même si la théorie selon laquelle les UPE soutiennent la cognition se révèle fausse ", anticipe Michael Gramlich.

    Auteur: Conor Feehly

    Conor Feehly est journaliste scientifique. Il travaille notamment pour Scientific American, New Scientist, Discover ou Nautilus.

  • 10 chansons qui rendent heureux selon la Science

    Pour les amerloques?????

    La musique adoucit les mœurs. Encore faut-il choisir la bonne playlist. Des chercheurs hollandais ont établi le classement des 10 chansons qui nous rendent heureux.

    Analyse de l’activité cérébrale et formules mathématiques à l’appui, des chercheurs hollandais ont mis au point l’équation du bonheur en musique. Elle stimule la mémoire, apaise nos angoisses et nous procure du bien-être.

    Pour ravir le cerveau des mélomanes, des travaux de recherche menés par l’équipe du Dr Jacob Jolij, chercheur en neurosciences cognitives à l’Université de Groningen, ont établi la liste des 10 chansons qui redonnent le sourire.

    LA FORMULE DE LA PARFAITE CHANSON DU BONHEUR

    Comment les notes de musique s'adressent-elles à notre cerveau? Pour y répondre, les scientifiques ont passé en revue le tempo, les gammes et les paroles des plus grands tubes de la chanson anglo-saxonne de ces 50 dernières années. A partir de ces données, ils ont conçu la recette des chansons les plus " feel good " qui nous mettent du baume au cœur.

    Selon Dr Jacob Jolij, l’équation de la chanson du bonheur s’établit en fonction de trois critères: un tempo de 150 battements par minute qui "déclenche inconsciemment un sentiment d’énergie", des paroles positives et l'utilisation de notes en gamme majeure. " Combinez ces trois ingrédients ensemble et vous avez la formule pour la parfaite chanson du bonheur ", souligne le chercheur auprès du Daily Mail.

    LES 10 CHANSONS QUI RENDENT HEUREUX

    Plus impressionnant encore, écouter ces chansons peut déclencher "inconsciemment une sensation d’énergie", précise le chercheur en neurosciences au site britannique. "L’utilisation du majeur [une classe de gammes diatoniques] sonne de manière joyeuse à nos oreilles, c’est quelque chose que nous associons à la confiance"", poursuit-il. C’est ainsi que des notes de musique construisent des mélodies qui parviennent à agir sur le cerveau des auditeurs et les mettre de bonne humeur. Voici donc les chansons qui nous rendent heureux:

    Don't Stop Me Now, Queen;

    Dancing Queen, Abba;

    Good Vibrations, The Beach Boys;

    Uptown Girl, Billy Joel;

    Eye of the Tiger, Survivor;

    I'm a Believer, The Monkees;

    Girls Just Want to Have Fun, Cindy Lauper;

    Living on a Prayer, Bon Jovi;

    I Will Survive, Gloria Gaynor;

    Walking on Sunshine, Katrina & The Waves.

    Cécilia Ouibrahim

     

    PERSO: je suis très, très contente lorsque j'entends une chanson du groupe QUENN avec Freddy Mercury, bien sûr!